3 resultados para Weather Variability

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CYP2D6 is a human cytochrome P450 that is responsible for the metabolism of a large number of drugs and chemicals. Interest in CYP2D6 has largely centered on the wide interindividual variability in its catalytic activity that stems from a common genetic polymorphism in the CYP2D6 gene. Two major phenotypes exist, extensive metabolizer (EM) and poor metabolizer (PM), together with the two less studied phenotypes of ultrarapid metabolizer (UM) and intermediate metabolizer. These phenotypes are the expression of an underlying allelomorphism in CYP2D6 and are also context dependent. Several drugs that are CYP2D6 substrates display polymorphic metabolism, that is, the existence in the population of multiple phenotypes, in particular EM and PM. The most notable drugs in this regard are debrisoquine and sparteine, although there are also data for a few others, in particular, dextromethorphan and metoprolol. Many nongenetic factors can alter the expression of CYP2D6 phenotypes, the most significant of which is the presence of other drugs. In this context, the EM phenotype may not be immutable, with potential conversion into a PM phenocopy, due to significantly impaired CYP2D6 metabolism in the presence of other CYP2D6 substrates and inhibitors. This phenotype interconversion generated great concern and helped drive the movement away from phenotyping based upon drug administration to genotyping of acquired DNA samples. However, ascertaining the presence of CYP2D6 alleles in a DNA sample does not determine the metabolism and pharmacokinetics of CYP2D6 substrates in that subject: it is a forecast, much like the weather forecast and, as we all know regarding the weather, the forecast can be inaccurate at times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. At shorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.